Tag Archive for: transformator suchy

Transformatory w fotowoltaice: wybór odpowiedniego transformatora dla maksymalnej wydajności elektrowni fotowoltaicznej

Dyskusje na temat zielonej energii często koncentrują się na panelach fotowoltaicznych, które przekształcają światło słoneczne w energię elektryczną, oraz falownikach, które przekształcają prąd stały w prąd zmienny. Chociaż te komponenty są kluczowe, istnieje jeszcze jedno, często pomijane ogniwo w łańcuchu między panelem fotowoltaicznym a naszymi domami lub zakładami przemysłowymi: transformator. Transformatory w fotowoltaice nie ograniczają się jednak do podnoszenia napięcia.

Rola transformatorów w elektrowniach fotowoltaicznych

Systemy fotowoltaiczne, niezależnie od ich wielkości, stoją przed fundamentalnym wyzwaniem: generowana przez nie energia musi być dostosowana do rygorystycznych wymogów sieci elektrycznej.

Rosnące napięcie

Panele fotowoltaiczne wytwarzają prąd stały (DC), który jest następnie przekształcany przez falownik na prąd zmienny (AC). Prąd przemienny jest jednak generowany przy stosunkowo niskim napięciu. Chociaż byłoby to wystarczające do normalnego użytku domowego, jest nieefektywne i nieekonomiczne w przypadku transmisji na średnie i duże odległości do punktów dystrybucji. Dlatego do gry wkracza transformator. Odbiera on prąd zmienny z falowników, a jego głównym zadaniem jest radykalne zwiększenie napięcia do poziomu sieci (np. 22 kV, 35 kV lub do 110 kV w przypadku dużych parków). Bez tego kroku straty energii byłyby ogromne. Wynika to z faktu, że wyższe napięcie pozwala na przesyłanie energii przy znacznie niższym natężeniu, minimalizując w ten sposób straty w liniach.

Izolacja i bezpieczeństwo systemu

Transformator pełni również funkcję zabezpieczającą. Zapewnia galwaniczną izolację systemu fotowoltaicznego od sieci dystrybucyjnej. To odsprzężenie chroni drogie i wrażliwe falowniki przed przepięciami, skokami napięcia i awariami, które mogą wystąpić w sieci, zapewniając jednocześnie, że awarie w parku solarnym nie wpłyną krytycznie na stabilność sieci energetycznej.

transformator w fotowoltaice

Typologia transformatorów w systemach fotowoltaicznych

BEZ TRANSFORMÁTORY oferuje dwa główne typy transformatorów dla parków fotowoltaicznych: transformatory olejowe i suche.

Transformatory olejowe dla energii odnawialnej

Transformatory chłodzone olej em są chłodzone olejem mineralnym i są najczęściej stosowanym typem w dłuższej perspektywie, szczególnie odpowiednim do zewnętrznych środowisk parków fotowoltaicznych, gdzie mogą wytrzymać niekorzystne warunki pogodowe. Dzięki chłodzeniu olejowemu mogą one skutecznie odprowadzać ciepło nawet przy wyższych obciążeniach, oferując doskonałą niezawodność i wydłużoną żywotność.

transformator olejowy

Transformatory suche dla odnawialnych źródeł energii

Transformatory suche nie wykorzystują ciekłego dielektryka, lecz są chłodzone powietrzem. Idealnie nadają się do stacji wewnętrznych i kontenerowych, w których występują zwiększone wymagania w zakresie bezpieczeństwa pożarowego, na przykład w pobliżu falowników lub w gęsto zabudowanych obszarach. Są bardziej przyjazne dla środowiska, wymagają mniej konserwacji i eliminują ryzyko wycieków oleju.

transformator suchy

Wpływ transformatorów na wydajność i stabilność przesyłu energii elektrycznej

Jakość transformatora bezpośrednio determinuje sukces ekonomiczny i niezawodność techniczną całego projektu solarnego.

Wydajność i minimalizacja strat

Jak już wspomnieliśmy, minimalizacja strat jest kluczowym czynnikiem. Wynika to z faktu, że zwiększając napięcie, prąd spada, co znacznie zmniejsza straty ciepła. Transformatory o niskich stratach własnych maksymalizują ilość wyprodukowanej energii, która faktycznie dociera do odbiorcy. Dzięki solidnej konstrukcji i żywotności przekraczającej 30 lat, transformatory gwarantują długoterminowy zwrot z inwestycji i niezawodne działanie parku fotowoltaicznego w różnych klimatach i warunkach pracy. Inwestycja w transformator o niskich stratach bez obciążenia i stratach zwarciowych zwróci się zatem wielokrotnie w długim okresie eksploatacji projektu.

Stabilność sieci i kontrola jakości

Fotowoltaika, choć jest czystym źródłem energii, może stanowić wyzwanie w postaci wahań napięcia i zniekształceń harmonicznych THD generowanych przez falowniki. Dlatego zaawansowane transformatory posiadają systemy, które umożliwiają płynną i automatyczną regulację napięcia, utrzymując w ten sposób stabilność sieci nawet przy gwałtownych zmianach nasłonecznienia. Ponadto transformator pomaga tłumić i filtrować prądy harmoniczne. Dzięki temu energia dostarczana do systemu dystrybucyjnego jest czysta i spełnia wszystkie normy.

transformator w elektrowni fotowoltaicznej

Wyzwanie przyszłości

Wraz z rozwojem fotowoltaiki i jej integracją z inteligentnymi sieciami oraz magazynowaniem energii w akumulatorach, zapotrzebowanie na transformatory będzie rosło. Ich wysokiej jakości konstrukcja, zdolność do obsługi zmiennych obciążeń i minimalizacji strat są niezbędne do pomyślnego i zrównoważonego przejścia na zieloną energię.

Jeśli obecnie projektujesz lub optymalizujesz swój park fotowoltaiczny i szukasz niestandardowego rozwiązania, które gwarantuje niskie straty i długą żywotność, skontaktuj się z nami. Nasi specjaliści techniczni chętnie pomogą w wyborze.

Awaria transformatora: co oznaczają klasy termiczne i jak wpływają na wydajność?

Transformatory zapewniają przesył i dystrybucję energii pomiędzy różnymi poziomami napięcia. Ich niezawodność i trwałość zależą nie tylko od konstrukcji i rodzaju zastosowanego rdzenia lub uzwojenia, ale także od ich zdolności do wytrzymywania ciepła wytwarzanego podczas pracy. W kolejnych sekcjach przyjrzymy się zatem podziałowi transformatorów według klas termicznych.

Klasy termiczne transformatorów

Klasa termiczna transformatora określa maksymalną temperaturę roboczą materiału izolacyjnego, przy której urządzenie może bezpiecznie pracować bez ryzyka uszkodzenia. Parametr ten jest zdefiniowany przez międzynarodowe normy i jest kluczowym elementem określającym żywotność i niezawodność sprzętu.

Materiały izolacyjne mają różną odporność cieplną. Dlatego klasa termiczna transformatora jest bezpośrednio związana z rodzajem materiałów użytych do izolacji uzwojenia i rdzenia:

  • Wyższa klasa termiczna pozwala transformatorowi pracować w wyższych temperaturach, co może być korzystne w zastosowaniach o wyższym obciążeniu lub przy częstych wahaniach obciążenia.
  • Z drugiej strony, niższa klasa termiczna oznacza, że transformator działa w niższych temperaturach, a jego żywotność może być krótsza w tych samych warunkach pracy.

Podział transformatorów ze względu na klasę termiczną

Zgodnie z międzynarodowymi normami transformatory są podzielone na kilka klas termicznych, które określają maksymalną dopuszczalną temperaturę roboczą ich materiałów izolacyjnych. Najpopularniejsze klasy to:

  • Klasa termiczna A (maksymalna temperatura robocza 105 °C): stosowana głównie w transformatorach olejowych. Są to materiały o niższej odporności na ciepło, odpowiednie do zastosowań, w których oczekuje się mniejszego nagrzewania.
  • Klasa termiczna B (maksymalna temperatura robocza 130 °C): powszechnie stosowana w urządzeniach przemysłowych i rozdzielnicach sieciowych. Zapewnia zrównoważone połączenie trwałości i odporności na obciążenia termiczne.
  • Klasa termiczna F (maksymalna temperatura robocza 155 °C): stosowana w transformatorach suchych lub epoksydowych z większymi obciążeniami lub tam, gdzie występują większe skoki temperatury. Zwiększa odporność sprzętu i wydłuża jego żywotność w zastosowaniach o dużym obciążeniu.
  • Klasa termiczna H (maksymalna temperatura robocza 180 °C): przeznaczona do specjalnych transformatorów lub zastosowań z ekstremalnymi obciążeniami termicznymi. Gwarantuje maksymalne bezpieczeństwo i długą żywotność nawet w bardzo wysokich temperaturach roboczych.

Rodzaje transformatorów i ich specyfikacje termiczne

Transformatory można podzielić na kilka głównych typów w zależności od konstrukcji, metody chłodzenia i przeznaczenia. Dla każdego z nich klasa termiczna jest kluczowym parametrem wpływającym na wydajność, bezpieczeństwo i żywotność:

  • Transformatory sucheWykorzystują powietrze lub inne gazy do chłodzenia uzwojeń. Transformatory te są najczęściej produkowane w klasie termicznej F, ale występują również w klasie H. Są zalecane do obszarów o wysokich wymaganiach bezpieczeństwa, takich jak szkoły, szpitale, biura, a także nadają się do zastosowań przemysłowych ze względu na ich wyższą trwałość.
  • Transformatory olejoweA: Wykorzystują olej transformatorowy jako czynnik chłodniczy i materiał izolacyjny. Klasa termiczna to zwykle A lub B. Są idealne do sieci dystrybucyjnych. Olej służy również jako materiał izolacyjny, co zwiększa bezpieczeństwo i żywotność transformatora.
  • Transformatory specjalne używane w zastosowaniach krytycznych, w urządzeniach o dużej mocy lub przemysłowych. Klasa termiczna od A do H, często ze specjalnymi systemami chłodzenia (np. obieg oleju lub chłodzenie wymuszone). Są stosowane tam, gdzie niezbędna jest maksymalna niezawodność i minimalizacja przestojów.
  • Transformatory dla odnawialnych źródeł energiiA: Zaprojektowane dla energii słonecznej, wiatrowej i innych odnawialnych źródeł energii. Często łączą konstrukcję suchą lub zanurzoną w oleju z klasą termiczną od A do F w zależności od mocy znamionowej i intensywności obciążenia. Muszą radzić sobie z wahaniami mocy i dostosowywać się do przerywanego wytwarzania energii odnawialnej. Inteligentne systemy kontroli temperatury pomagają zapobiegać przegrzaniu i optymalizować żywotność transformatora.

Wpływ klasy termicznej na wydajność i bezpieczeństwo

Klasa termiczna transformatora ma bezpośredni wpływ na jego wydajność, żywotność i bezpieczeństwo. Wyższa klasa termiczna umożliwia pracę transformatora przy wyższych obciążeniach bez ryzyka przegrzania. Z drugiej strony, przeciążenie poniżej pojemności cieplnej może prowadzić do zwiększonych strat i zmniejszonej wydajności. Optymalnie dobrana klasa termiczna pozwala na efektywną dystrybucję energii nawet przy zmiennych obciążeniach.

Materiały izolacyjne transformatora ulegają szybszej degradacji w wysokich temperaturach, więc im temperatura robocza jest bliższa maksymalnej klasie termicznej, tym szybciej następuje starzenie się izolacji. Właściwy dobór klasy termicznej wydłuża zatem żywotność sprzętu. Klasa termiczna określa również maksymalną bezpieczną temperaturę pracy, chroniąc w ten sposób transformator przed przegrzaniem i możliwymi awariami. Nieprawidłowo przewymiarowany transformator może spowodować ryzyko pożaru lub awarii sieci.

materiały izolacyjne

Tylko transformatory o odpowiedniej klasie termicznej mogą pracować stabilnie w różnych warunkach roboczych.

Praktyczne zalecenia od profesjonalistów

Przy wyborze należy wziąć pod uwagę typ transformatora, jego konstrukcję, miejsce instalacji, oczekiwane obciążenie robocze i specyficzne warunki, takie jak środowisko przemysłowe lub integracja z odnawialnymi źródłami energii. Podczas planowania i modernizacji sieci elektrycznych należy wybierać transformatory nie tylko według mocy i typu uzwojenia, ale także według specyfikacji termicznych. Uwzględnienie klas termicznych pomaga zapobiegać przegrzaniu, przestojom i awariom, poprawiając tym samym bezpieczeństwo i niezawodność całego systemu.

Magazynowanie baterii: przyszłość energii

Akumulatory stają się kluczowym elementem nowoczesnych sieci energetycznych. Mogą one stabilizować sieć, zapewniać zasilanie rezerwowe i optymalizować przepływ energii. Stanowią również wyzwanie techniczne dla firm zajmujących się transformatorami i dystrybucją energii. Jest to jednak również szansa na integrację nowoczesnych rozwiązań z istniejącą infrastrukturą. Wybór odpowiedniego typu magazynu, jego pojemności i kompatybilności z transformatorami to czynniki krytyczne dla wydajnego i niezawodnego działania każdego systemu energetycznego.

Znaczenie magazynowania baterii w nowoczesnych sieciach energetycznych

Nowoczesne sieci elektroenergetyczne w coraz większym stopniu muszą radzić sobie z wahaniami w wytwarzaniu energii, zwłaszcza w wyniku rosnącego udziału odnawialnych źródeł energii. Magazynowanie energii w akumulatorach umożliwia złagodzenie takich wahań i zapewnia elastyczność oraz niezawodne dostawy energii elektrycznej. Główne korzyści płynące z magazynowania energii w akumulatorach obejmują

  • stabilizacja sieci,
  • wsparcie dla źródeł odnawialnych
  • i zasilanie awaryjne.

Jednak integracja akumulatorów to nie tylko kwestia ich pojemności, ale także odpowiedniej koordynacji z transformatorami i inną infrastrukturą sieciową. Tylko dobrze zaprojektowany system może zoptymalizować przepływ energii, wydłużyć żywotność sprzętu i obniżyć koszty operacyjne.

magazynowanie baterii i odnawialne źródła energii


Przegląd technologii magazynowania energii w akumulatorach

Istnieje wiele technologii akumulatorów, które różnią się pojemnością, trwałością, wydajnością i kosztami:

  • Akumulatory litowo-jonowe są najczęściej stosowaną technologią w nowoczesnym magazynowaniu energii. Są one stosowane w systemach, w których wymagana jest szybka i wydajna regulacja energii.
  • Akumulatory kwasowo-ołowiowe to tradycyjna technologia o niższych kosztach. Nadają się do systemów zapasowych lub mniejszych zastosowań, w których wysoka częstotliwość cykli nie jest krytyczna.
  • Alternatywne technologie obejmują baterie sodowe, wanadowe i inne, które mogą być bardziej opłacalne ekonomicznie przy dużych pojemnościach.

Integracja akumulatorów z transformatorami

Transformatory odgrywają ważną rolę w dystrybucji energii elektrycznej i jej połączeniu z magazynowaniem, umożliwiając optymalizację przepływu mocy i minimalizację strat. Efektywna integracja akumulatorów z transformatorami ma zatem kluczowe znaczenie dla niezawodnego i energooszczędnego działania sieci.

  • Akumulatory muszą być dopasowane do pojemności i poziomów napięcia transformatorów.
  • Nowoczesne systemy pozwalają na inteligentne sterowanie dostawami energii pomiędzy baterią, transformatorem i siecią w zależności od aktualnego zapotrzebowania i produkcji.
  • Prawidłowo zaprojektowane połączenie chroni transformatory i akumulatory przed przeciążeniami, wahaniami napięcia i innymi usterkami.

Integracja akumulatorów stanowi strategiczny krok w kierunku modernizacji infrastruktury energetycznej i zapewnia firmom transformatorowym przewagę konkurencyjną we wdrażaniu inteligentnych i elastycznych rozwiązań.

Aspekty ekonomiczne, cena i połączenie z transformatorami

Wdrażając magazynowanie baterii, należy wziąć pod uwagę nie tylko technologię baterii, ale także rodzaj transformatorów, z którymi będzie współpracować magazyn. Koszt i wydajność całego systemu będą zależeć od kombinacji tych elementów.

  • Akumulatory litowo-jonowe zapewniają wysoką gęstość energii i długą żywotność, dzięki czemu idealnie nadają się do pracy z transformatorami suchymi stosowanymi w obszarach o wysokich wymaganiach bezpieczeństwa.
  • Większe akumul atory są lepiej połączone z transformatorami olejowymi, które mogą obsługiwać wyższe obciążenia i szczyty energetyczne.
  • W zastosowaniach przemysłowych lub w urządzeniach o znaczeniu krytycznym stosowane są specjalne transformatory, które wraz z magazynowaniem energii w akumulatorach pozwalają zoptymalizować przepływ energii i zminimalizować przerwy w zasilaniu.

Magazynowanie energii w akumulatorach jest integralną częścią nowoczesnego sektora energetycznego, zwłaszcza w erze rosnącej liczby odnawialnych źródeł energii. Wybór rodzaju akumulatora i jego integracja z suchymi transformatorami olejowymi lub specjalnymi ma wpływ na wydajność, niezawodność i zwrot z inwestycji.

Jak działa transformator: proste wyjaśnienie dla każdego

Nawet jeśli nie wiesz, jak działa transformator, trudno byłoby wyobrazić sobie życie bez niego. Jednak wiele osób nie wie, czym on jest i jak właściwie działa. Dlatego dzisiaj wyjaśnimy zasadę jego działania w prosty i zrozumiały sposób. Przyjrzymy się podstawowym procesom, które w nim zachodzą i pokażemy jego praktyczne zastosowanie.

Zasada działania transformatora

Transformator zmienia napięcie elektryczne. Może je zwiększać lub zmniejszać. Jego podstawowymi częściami są cewki z drutu aluminiowego lub miedzianego, zwane uzwojeniem pierwotnym i wtórnym. Pomiędzy nimi znajduje się metalowy rdzeń, zwykle wykonany z miękkiej stali.

Gdy zmienny prąd elektryczny jest przykładany do pierwszej cewki (uzwojenie pierwotne), wokół niej powstaje pole magnetyczne. To pole magnetyczne przemieszcza się przez metalowy rdzeń transformatora do drugiej cewki (uzwojenia wtórnego), gdzie zmieniające się pole magnetyczne „dotyka” przewodnika i powoduje pojawienie się w nim nowego prądu elektrycznego. Nazywa się to indukcją. W zależności od tego, ile zwojów ma druga cewka w porównaniu do pierwszej, napięcie wzrośnie lub spadnie.

Zjawisko to opisuje prawo indukcji elektromagnetycznej Faradaya, które mówi, że „zmiana pola magnetycznego w czasie indukuje napięcie elektryczne w cewce”. Oznacza to, że transformator działa tylko z prądem zmiennym, ponieważ prąd stały nie wytworzyłby zmieniającego się pola magnetycznego potrzebnego do indukcji.

W ten sposób transformator zmienia napięcie bez poruszania się w nim czegokolwiek. Cały proces opiera się na polu magnetycznym i prądzie zmiennym.

transformator

Jak działa transformator i jego poszczególne części

Transformator ma dwa główne uzwojenia. Uzwojenie pierwotne to część, która odbiera prąd elektryczny ze źródła, takiego jak elektrownia. Uzwojenie wtórne przekazuje przetworzone napięcie tam, gdzie jest ono potrzebne, na przykład do urządzeń gospodarstwa domowego. Oba uzwojenia są nawinięte z drutów miedzianych lub aluminiowych i oddzielone od siebie tak, że prąd elektryczny nie może płynąć bezpośrednio, a jedynie przez pole magnetyczne w rdzeniu.

Rdzeń to metalowa część, najczęściej wykonana ze stali lub żelaza, która jest umieszczona pomiędzy uzwojeniami. Jego zadaniem jest przewodzenie pola magnetycznego generowanego w uzwojeniu pierwotnym do uzwojenia wtórnego. Dzięki rdzeniowi pole magnetyczne jest skoncentrowane, a transformator działa wydajnie.

Rodzaje transformatorów

W praktyce spotykamy się z różnymi typami transformatorów, które różnią się konstrukcją i zastosowaniem:

  • Transformatory suche Mają rdzeń i uzwojenia chłodzone powietrzem. Są one używane głównie w pomieszczeniach lub tam, gdzie ważna jest czystość i bezpieczeństwo, np. w szpitalach lub biurach. Są bardziej przyjazne dla środowiska, ponieważ nie zawierają oleju, ale mają niższą maksymalną moc wyjściową.
  • Transformatory olejowe są wypełnione olejem izolacyjnym, który pomaga chłodzić uzwojenia, jednocześnie je izolując. Są one stosowane głównie w dużych podstacjach i aplikacjach o dużej mocy, ponieważ olej poprawia rozpraszanie ciepła i zmniejsza ryzyko przegrzania.
  • Dostępne są również transformatory specjalnektóre zostały zaprojektowane do określonych celów, na przykład transformatory międzysystemowe, trójuzwojeniowe, falownikowe, jednofazowe, wzbudzające lub uziemiające.
  • Wiele z nich jest również przystosowanych do pracy z panelami słonecznymi, turbinami wiatrowymi lub innymi źródłami. Transformatory dla odnawialnych źródeł energii dostarczają energię elektryczną o określonych parametrach i pomagają w prawidłowym podłączeniu tych źródeł do sieci.
transformator

Praktyczne zastosowanie transformatorów w sieciach elektrycznych

Transformatory bezpiecznie i wydajnie przesyłają energię elektryczną z elektrowni do naszych domów. Wynika to z faktu, że energia elektryczna jest wytwarzana w dużych elektrowniach wysokiego napięcia, aby zminimalizować straty podczas przesyłu na duże odległości. Jednak gdy zbliża się do miejsca, w którym chcemy z niej korzystać, podstacje muszą obniżyć jej napięcie do poziomu bezpiecznego dla domów lub przemysłu. Dzięki temu możemy podłączyć urządzenia takie jak telewizor, komputer czy lodówka w domu bez obawy, że coś pójdzie nie tak.

BEZ TRANSFORMÁTORY nie moglibyśmy…

używać zwykłych urządzeń gospodarstwa domowego, ponieważ większość z nich wymaga niskiego napięcia.

do przesyłania energii elektrycznej na duże odległości bez ogromnych strat.

do bezpiecznej pracy z wysokim napięciem w przemyśle lub energetyce.

Zrozumienie podstawowej zasady działania transformatora pomaga nam lepiej zrozumieć, jak ważne są te urządzenia w naszym codziennym życiu. Nawet jeśli ich nie widzimy, współczesne społeczeństwo nie mogłoby bez nich funkcjonować.

Kiedy wybrać transformator epoksydowy, a kiedy olejowy?

Wybór odpowiedniego transformatora to nie tylko kwestia techniczna, ale decyzja, która wpłynie na jego bezpieczeństwo, konserwację i długoterminowe koszty operacyjne. Najpopularniejsze typy transformatorów obejmują transformatory epoksydowe i olejowe. Ale kiedy wybrać który z nich? Przyjrzyjmy się ich zaletom, wadom i sytuacjom, w których najlepiej je zastosować.

Co je wyróżnia

Transformator olejowy jest wypełniony specjalnym olejem izolacyjnym, który rozprasza ciepło, jednocześnie izolując wewnętrzne elementy urządzenia.

Transformator epoksydowy ma uzwojenia zalane żywicą epoksydową, nie potrzebuje żadnej cieczy, dlatego często określa się go jako suchy.

Kiedy wybrać transformator epoksydowy

Ten typ jest idealny wszędzie tam, gdzie bezpieczeństwo, czystość i łatwość obsługi są priorytetem. Zalecamy go do budynków, w których poruszają się ludzie, takich jak centra handlowe, szpitale, szkoły i biura. Znajduje zastosowanie we wnętrzach o ograniczonej przestrzeni i wymogu niskiego poziomu hałasu, ale także w miejscach o surowych normach przeciwpożarowych i środowiskowych.

Nie ma ryzyka wycieku oleju, a ryzyko pożaru jest również niższe niż w przypadku transformatora zanurzonego w oleju. Transformator epoksydowy ma minimalne wymagania konserwacyjne, a jego instalacja jest prosta i szybka. Jednak cena zakupu może być wyższa, a wydajność ma również swoje ograniczenia.

V BEZ TRANSFORMÁTORY Produkujemy transformatory suche o mocy do 10 000 kVA i maksymalnym napięciu urządzenia do 36 kV. Ze względu na wysoką odporność na wstrząsy sejsmiczne i niskie straty mocy, urządzenia te nadają się również do pracy w trudnych warunkach.

Kiedy wybrać transformator olejowy

Transformatory olejowe oferują wysoką wydajność i są odpowiednie do pracy w trudniejszych warunkach zewnętrznych. Są one częścią podstacji, energochłonnych zakładów przemysłowych i miejsc, w których spodziewane są duże obciążenia lub ekstremalne warunki klimatyczne. Wysoka wydajność idzie w parze z wydajnym chłodzeniem. Przy odpowiedniej konserwacji transformator olejowy charakteryzuje się długą żywotnością.

Istnieje jednak większe ryzyko pożaru, dlatego zawsze zaleca się regularną konserwację, niezależnie od tego, czy dotyczy to sprawdzania oleju, czy systemów filtrów. Ponadto nie nadaje się do zamkniętych przestrzeni w budynkach.

transformator olejowy

Firma BEZ TRANSFORMÁTORY jest jednym z wiodących producentów transformatorów olejowych w Europie Środkowej z ponad 120-letnią historią. Produkuje transformatory rozdzielcze o mocy od 25 kVA do 16 MVA i maksymalnym napięciu urządzeń do 38,5 kV. Charakteryzują się one bezobsługową pracą, wysoką niezawodnością, możliwością zastosowania przyjaznych dla środowiska dielektryków i energooszczędnością.

Szybkie porównanie

Podsumowując, zarówno transformatory suche (epoksydowe), jak i olejowe naszej firmy są najlepsze w swojej kategorii. Wybór między nimi zależy jednak głównie od konkretnego zastosowania i środowiska pracy.

Transformatory epoksydowe charakteryzują się wysokim poziomem bezpieczeństwa, minimalną konserwacją i kompaktową konstrukcją, która zostanie doceniona we wnętrzach, budynkach komercyjnych, szpitalach lub centrach danych. Dzięki zaawansowanemu zalaniu uzwojeń żywicą epoksydową są one odporne na wilgoć, kurz i wibracje oraz nie stwarzają ryzyka wycieku cieczy.

Z drugiej strony, transformatory olejowe charakteryzują się większą wytrzymałością, wyższą wydajnością i doskonałym chłodzeniem. Dzięki temu idealnie nadają się do zakładów przemysłowych lub sieci dystrybucji energii.

Mówiąc najprościej, jeśli szukasz bezobsługowego i bezpiecznego rozwiązania dla swojego budynku, wybierz transformator suchy. Jeśli jednak potrzebujesz wysokiej wydajności i pracy w trudnych warunkach lub na zewnątrz, sięgnij po transformator zanurzony w oleju. W obu przypadkach można jednak polegać na jakości i doświadczeniu firmy BEZ TRANSFORMÁTORY.

Produkcja transformatorów epoksydowych

Dzięki ponad 120-letniej historii, nowoczesnym zakładom produkcyjnym i eksportowi do kilkudziesięciu krajów na całym świecie, jesteśmy jednym z liderów w Europie Środkowej. Specjalizujemy się w produkcji transformatorów olejowych i epoksydowych, które spełniają najbardziej rygorystyczne normy techniczne i środowiskowe. Jesteśmy w stanie dostosować nasze rozwiązania do różnych sektorów, od przemysłu i energetyki po odnawialne źródła energii i budynki użyteczności publicznej.

Jeśli więc szukasz niezawodnego partnera w dziedzinie transformatorów, skontaktuj się z nami. Z nami zyskujesz długoterminowego partnera, który koncentruje się na niezawodności, bezpieczeństwie i trwałej wartości.